Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.
نویسندگان
چکیده
The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.
منابع مشابه
Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملGlycogen supercompensation masks the effect of a traininginduced increase in GLUT-4 on muscle glucose transport.
Endurance exercise training induces a rapid increase in the GLUT-4 isoform of the glucose transporter in muscle. In fasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that high muscle glycogen may decrease insulin-stimulated glucose transport. This study was undertaken to determine whether glycogen supercompensation i...
متن کاملPrevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.
Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determ...
متن کاملMechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determ...
متن کاملEffect of endurance exercise training on muscle glycogen supercompensation in rats.
The purpose of this study was to test the hypothesis that the rate and extent of glycogen supercompensation in skeletal muscle are increased by endurance exercise training. Rats were trained by using a 5-wk-long swimming program in which the duration of swimming was gradually increased to 6 h/day over 3 wk and then maintained at 6 h/day for an additional 2 wk. Glycogen repletion was measured in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 2004